MA 3053 Section 01	Practice Exam 1	November 19, 2019

Name:__

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Let $f: X \to Y$ and $g: Y \to Z$. Prove that if $g \circ f$ is an injection, then f is an injection.

2. Let $f: X \to Y$. Given functions $g, h: W \to X$ such that whenever $f \circ g = f \circ h$, then g = h; show that f is injective.

3. Let $f: X \to Y$ and $P_{\alpha} \subseteq Y$ for every $\alpha \in A$ Show

$$f^{-1}\left(\bigcup_{\alpha\in A}P_{\alpha}\right) = \bigcup_{\alpha\in A}f^{-1}(P_{\alpha})$$

4. Let $f: X \to Y$ and $P_{\alpha} \subseteq X$ for every $\alpha \in A$ Show

$$f\left(\bigcup_{\alpha\in A}P_{\alpha}\right) = \bigcup_{\alpha\in A}f(P_{\alpha})$$

5. Let f be a real function that is strictly decreasing. Prove that for any $b \in \mathbb{R}$, $f^{-1}(b)$ is either empty or consists of a single element. Deduce from this that f must be an injection.

6. Let f be a real function that is decreasing. Is it possible for f not to be injective? Surjective? Be sure to justify.

7. Let \sim be a relation on $X = \mathbb{Z} \times \mathbb{Z}$ by $(a, b) \sim (c, d)$ if and only if a + d = b + c. Which of the properties of reflexivity, symmetry, antisymmetry, and transitivity apply to this relation? If it has a property be sure to prove it, if it doesn't give a counterexample.

8. Let \mathcal{F} be a family of sets and let R be a relation on \mathcal{F} by XRY if and only if $X \subsetneq Y$. Which of the properties of reflexivity, symmetry, antisymmetry, and transitivity apply to this relation? If it has a property be sure to prove it, if it doesn't give a counterexample.