Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. Prove that if $g \circ f$ is an injection, then f is an injection.
2. Let $f: X \rightarrow Y$. Given functions $g, h: W \rightarrow X$ such that whenever $f \circ g=f \circ h$, then $g=h$; show that f is injective.
3. Let $f: X \rightarrow Y$ and $P_{\alpha} \subseteq Y$ for every $\alpha \in A$ Show

$$
f^{-1}\left(\bigcup_{\alpha \in A} P_{\alpha}\right)=\bigcup_{\alpha \in A} f^{-1}\left(P_{\alpha}\right)
$$

4. Let $f: X \rightarrow Y$ and $P_{\alpha} \subseteq X$ for every $\alpha \in A$ Show

$$
f\left(\bigcup_{\alpha \in A} P_{\alpha}\right)=\bigcup_{\alpha \in A} f\left(P_{\alpha}\right)
$$

5. Let f be a real function that is strictly decreasing. Prove that for any $b \in \mathbb{R}, f^{-1}(b)$ is either empty or consists of a single element. Deduce from this that f must be an injection.
6. Let f be a real function that is decreasing. Is it possible for f not to be injective? Surjective? Be sure to justify.
7. Let \sim be a relation on $X=\mathbb{Z} \times \mathbb{Z}$ by $(a, b) \sim(c, d)$ if and only if $a+d=b+c$. Which of the properties of reflexivity, symmetry, antisymmetry, and transitivity apply to this relation? If it has a property be sure to prove it, if it doesn't give a counterexample.
8. Let \mathcal{F} be a family of sets and let R be a relation on \mathcal{F} by $X R Y$ if and only if $X \varsubsetneqq Y$. Which of the properties of reflexivity, symmetry, antisymmetry, and transitivity apply to this relation? If it has a property be sure to prove it, if it doesn't give a counterexample.
